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Homolytic 1,6-Transfer of the BuzSn Group from Allylic Carbon to Alkoxy Oxygen

Sunggak Kim* and Kwang Min Lim
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Anovel 1,6-BuzSn group transfer from allylic carbon to alkoxy oxygen is observed in radical reactions of viny! oxetanes;
it is greatly favoured over 1,5- and 1,6-hydrogen atom transfer.

1,5- and 1,6-hydrogen atom transfers are the most studied
paths among radical rearrangements! and they have useful
synthetic applications.2 Radical rearrangement of Group 4
elements involving R3Si, R3Ge and R;3Sn group transfers has
not been actively investigated,? although the reaction should
be feasible because of the release in bond energy accompany-
ing rearrangement. Davies and Tse have presented evidence
for 1,5-BusSn group transfer from enoxy oxygen to alkoxy
oxygen.* Recently, we have reported novel radical cycliza-
tions utilizing 1,5-BusSn group transfers from allylic carbon to
alkoxy oxygens and from enoxy oxygen to alkoxy oxygen.5 In
connection with our continuing interest in radical rearrange-
ments, we turned our attention to 1,6-Bu3Sn group transfer
reactions. The homolytic bond dissociation energy for the
C-H bond is roughly 29 kcal mol—1 (1 cal = 4.184 J) greater
than for the C-Sn bond and it is estimated that the 1,6-BusSn
transfer in 2 would be thermodynamically favoured by ca. 39
kcal mol—! whereas 1,5- and 1,6-hydrogen transfer would be
favoured by ca. 19 kcal mol—1.7

To explore the interesting possibilities of 1,6-BusSn transfer
and competition between 1,5-hydrogen, 1,6-hydrogen and
1,6-Bu;Sn transfer, the vinyl oxetanes 1 were prepared by
routine operations. Reaction of 1 (n = 1 and 2) with Bu;SnH
in the presence of azoisobutyronitrile (AIBN) in refluxing
benzene was not successful, yielding a recovery of ca. 50% of
starting material even after 24 h. When the reaction was
carried out in refluxing xylene using di-ter-butyl peroxide
(DTBP) as an initiator, the reaction proceeded smoothly. As
shown in Scheme 1, in order to differentiate between the
products 5 and 6, resulting from 1,6-hydrogen transfer and
direct quenching, the remaining reactions were carried out
with BuzSnD. Reaction of 1 (0.05 mol dm—3 in xylene) with
Bu3SnD (1.2 equiv.) and DTBP (0.1 equiv.) in xylene at 140
°C for 16 h afforded an inseparable mixture of 3 and 4 as major
products. Also produced in this reaction were 5, resulting
from 1,6-hydrogen transfer of 2, and the direct quenching
product 6. The ratio of 3a, 3b and 4 was determined by 'H

NMR analysis in the olefinic region. Compound 4 was
independently prepared in 48% yield by reaction of 1 (n = 1)
with diphenyl disulfide (0.3 equiv.) and AIBN (0.1 equiv.) in
refluxing benzene for 4 h and 3b was also prepared by
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Scheme 1 Sn = Bu3Sn
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Table 1 Reactions of compounds 1 with tri-n-butyltin deuteride

Product ratio

Substrate  Yield(%)? 3a+ 3b(3a/3b)® 4% 5c 6c

n=1 72 75 (88/12) 13 8 4
n=2 65 80 (75/25) 8 9 3
n=3 61 88(92/8) 3 6 3

4 Isolated yields. ¢ The ratio was determined for a mixture of 3a, 3b
and 4 by 'H NMR. < The amount was determined by 'H NMR, after
destannylation of a mixture of 5 and 6.

treatment of 6 with DCI. Furthermore, the ratio of 5 and 6 was
similarly determined by !H NMR analysis of destannylated
products (3b, 7). Some experimental results are summarized
in Table 1; several features are noteworthy. First, 1,6-Bu;Sn
transfer from carbon to oxygen is favoured over 1,6-hydrogen
transfer by ca. 10 to 1. Secondly, 1,6-Bu;Sn transfer is also
greatly preferred over 1,5-hydrogen transfer. On the basis of
the reported rate constant for 1,5-H transfer of ca. 108 s—1,8
the rate constant for 1,6-BusSn transfer should be ca. 109 s—1.
Finally, the ratio of 1,5- to 1,6-hydrogen transfer in this study
is ca. 1:1; the ratio of 1,5- to 1,6-hydrogen transfer from
carbon to oxygen is ca. 10:1.9 This striking result might be
explained by stabilization due to the «-stannyl group or
anchimeric assistance.10
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